LateX Quick Reference

by Saji P. K.

Home

Math

---------------------------------------------------------------------------

Method of writing equations

$ .... $ Used to write equation in text or paragraph) Example: Let the function is given by $ y = 2 x - 9 $ \[ .... \] (Write equation in a new line centered) Example: \[ y = 2 x + 6 \] equation (Used if equations are numbered and are referred in text. Create equation in new line, centered. Using equation* will write equation without numbering) \begin{equation} equation here \label{} \end{equation} split (Used to split equation that start at a position referred by the symbol '&'. All lines in this equation will start at the same position. This method is useful when deriving equation by keeping the equal sign at the same position) \begin{equation*} \begin{split} y(6) & = y(3) + f^{'}(3) (6-3) + f^{''}(3)\frac{(6-3)^{2}}{2!} + ... \\ & = -138 \end{split} \end{equation*} multline (In this mode, a big equation can be written as different lines. Each line will be aligned to the right) \begin{multline*} y(p) = y(a) + (p-a) \left. \frac{dy}{dx} \right|_{a} + \frac{(p-a)^{2}}{2!} \left. \frac{d^{2}y}{dx^{2}} \right|_{a} \\ + \frac{(p-a)^{3}}{3!} \left. \frac{d^{3}y}{dx^{3}} \right|_{a} + ... \end{multline*} Left aligned equations \begin{flalign*} k_{1} & = h \; f(x_{n}, y_{n}) &&\\ k_{2}+3456 & = h \; f(x_{n}, y_{n}) && \end{flalign*} ------------------------------------------------------------------------------

Mathematical command and notations

Raised to : ^{} Subscript : _{} Fraction : \frac{}{} Note: place numerator in the first curly bracket and denometer in second Square root : \sqrt{} Symbols : \alpha, \beta, \lamda, \pi, \omega ... Note: for more symbols, click the symbols shown on the left of editor. Brackets for terms : \left( ... \right) \left[ ... \right] Summation symbol : \sum_{lower}^{upper} Integral : \int_{lower}^{uppper} Overline : \overline{} Underline : \underline{} Underbrace : \underbrace{} Right vertical bar (used for derivatives) : \[ \left. \frac{d \phi}{dx} \right|_{x=0} \] ----------------------------------------------------------------------------------