# LateX Quick Reference

Home

## Math

---------------------------------------------------------------------------

Method of writing equations

$....$
Used to write equation in text or paragraph)

Example:

Let the function is given by $y = 2 x - 9$

$....$
(Write equation in a new line centered)

Example:

$y = 2 x + 6$

equation
(Used if equations are numbered and are referred in text.
Create equation in new line, centered.
Using equation* will write equation without numbering)

\begin{equation}
equation here
\label{}
\end{equation}

split
(Used to split equation that start at a position referred by the symbol '&'.
All lines in this equation will start at the same position.
This method is useful when deriving equation by keeping the equal sign at the same position)

\begin{equation*}
\begin{split}
y(6) 	& = y(3) + f^{'}(3) (6-3) + f^{''}(3)\frac{(6-3)^{2}}{2!} + ...  \\
& = -138
\end{split}
\end{equation*}

multline
(In this mode, a big equation can be written as different lines. Each line
will be aligned to the right)

\begin{multline*}
y(p) = y(a)
+ (p-a) \left. \frac{dy}{dx} \right|_{a}
+ \frac{(p-a)^{2}}{2!} \left. \frac{d^{2}y}{dx^{2}} \right|_{a} \\
+ \frac{(p-a)^{3}}{3!} \left. \frac{d^{3}y}{dx^{3}} \right|_{a} + ...
\end{multline*}

Left aligned equations

\begin{flalign*}
k_{1} 		& = h \; f(x_{n}, y_{n}) &&\\
k_{2}+3456 	& = h \; f(x_{n}, y_{n}) &&
\end{flalign*}
------------------------------------------------------------------------------

Mathematical command and notations

Raised to			: ^{}

Subscript			: _{}

Fraction			: \frac{}{}
Note: place numerator in the first curly bracket and denometer in second

Square root			: \sqrt{}

Symbols				: \alpha, \beta, \lamda, \pi, \omega ...

Note: for more symbols, click the symbols shown on the left of editor.

Brackets for terms		:
\left( ... \right)
\left[ ... \right]

Summation symbol		: \sum_{lower}^{upper}

Integral			: \int_{lower}^{uppper}

Overline			: \overline{}

Underline			: \underline{}

Underbrace			: \underbrace{}

Right vertical bar (used for derivatives) :

$\left. \frac{d \phi}{dx} \right|_{x=0}$

----------------------------------------------------------------------------------